## Title page

**Title:** High Alcohol Consumption and The Risk of Renal Damage: A Systematic Review and Meta-analysis

**Authors:** Wisit Cheungpasitporn, MD<sup>1</sup>, Charat Thongprayoon, MD<sup>1</sup>, Wonngarm Kittanamongkolchai, MD<sup>1</sup>, Brady A. Brabec, MD<sup>1</sup>, Oisin A. O'Corragain, MB, BCh, BAO<sup>2</sup>, Peter J. Edmonds, BS<sup>3</sup> and Stephen B. Erickson, MD<sup>1</sup>

**Institutional affiliations:** <sup>1</sup>Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA. <sup>2</sup>University College Cork, Cork, Ireland. <sup>3</sup>SUNY Upstate Medical University, Syracuse, NY, USA

Running Title: High Alcohol Consumption and Renal Damage

## **Corresponding author:**

Wisit Cheungpasitporn, MD
Department of Medicine, Division of Nephrology and Hypertension
Mayo Clinic College of Medicine
200 First Street SW, Rochester, MN 55905
Tel: (507) 266-7960,
Fax: (507) 266-7891
E-mail: <u>cheungpasitporn.wisit@mayo.edu</u>
Abstract word count: 247 words

Manuscript word count: 1,978 words

Conflict of interest statement for all authors: We do not have any financial or non-

financial potential conflicts of interest.

# Support and Financial Disclosure Declaration

We wish to confirm that all authors have no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

**Keywords:** Alcohol Consumption; Chronic Kidney Disease (CKD); End Stage Renal Disease (ESRD); Proteinuria.

## <u>Abstract</u>

<u>Background</u>: The risk of renal damage in patients with high alcohol consumption is controversial. The objective of this meta-analysis was to evaluate the associations between high alcohol consumption and progression of kidney damage including chronic kidney disease (CKD), end stage renal disease (ESRD), and proteinuria.

<u>Methods:</u> A literature search was performed using MEDLINE, EMBASE, and Cochrane Databases from inception through August 2014 to identify studies investigating the association between high alcohol consumption and CKD, ESRD or proteinuria. Studies that reported odds ratios, relative risks or hazard ratios comparing the risk of CKD, ESRD or proteinuria in patients consuming high amount of alcohol versus those who did not consume alcohol were included. Pooled risk ratios (RR) and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method.

<u>Results</u>: Twenty studies with 292,431 patients were included in our analysis to assess the associations between high alcohol consumption and progression of kidney damage. The pooled RRs of CKD, proteinuria and ESRD in patients with high alcohol consumption were 0.83 (95% CI 0.71-0.98), 0.85 (95% CI 0.62-1.17) and 1.00 (95% CI, 0.55-1.82),

respectively. Post hoc analysis assessing the sex-specific association between high alcohol consumption and CKD demonstrated pooled RRs of 0.72 (95% CI 0.57-0.90) in males and 0.78 (95% CI 0.58-1.03) in females.

<u>Conclusions</u>: Our study demonstrates an inverse association between high alcohol consumption and risk for developing CKD in males. There is no significant association between high alcohol consumption and the risk for developing proteinuria or ESRD.

## **Introduction**

Chronic kidney disease (CKD) is an important problem worldwide. Over 20 million people in the United States were estimated to have CKD, and prevalence worldwide is estimated at 8-16%.<sup>1</sup> Moreover, the rising incidence of end-stage renal disease (ESRD) is currently a public health crisis worldwide.<sup>2</sup> Studies have demonstrated that worsening protienuria is associated with progression of CKD to ESRD.<sup>3</sup>

Several factors, including increasing rates of diabetes mellitus (DM) and population aging have contributed to a rise in prevalence of CKD.<sup>4</sup> Alcohol, one of the most commonly used substances worldwide, has been raised as a potential cause of kidney damage, as studies have shown that excessive alcohol consumption is associated with hypertension (HTN), one of the major risk factors for CKD.<sup>5</sup> However, the reported risk of renal damage including CKD, ESRD and proteinuria in patients with high alcohol consumption is still conflicting. Several studies have demonstrated that heavy alcohol drinking is associated with CKD, ESRD and proteinuria.<sup>6-8</sup> In the American population, high alcohol consumption of more than 2 drinks per day was shown to increase the risk of ESRD.<sup>8</sup> Conversely, a number of studies have shown no associations between heavy alcohol drinking and CKD, ESRD and proteinuria.<sup>9-17</sup> In addition, a few studies have shown that high alcohol consumption is inversely associated with CKD<sup>12, 18-22</sup>, ESRD<sup>23</sup> and proteinuria.<sup>11, 21</sup>

The objective of this meta-analysis was to evaluate the associations between high alcohol consumption and progression of kidney damage including CKD, ESRD and proteinuria.

#### **Methods**

#### Search strategy

Two investigators (W.C. and C.T.) independently searched published studies indexed in MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central

Register of Controlled Trials and clinicaltrials.gov from inception through August 2014 using the search strategy described in **Item S1** (provided as online **supplementary data**). A manual search for additional relevant studies using references from retrieved articles was also performed.

## Inclusion criteria

The inclusion criteria were as follows: (1) randomized controlled trials (RCTs) or observational studies (case-control, cross-sectional or cohort studies) published as original studies to evaluate the risk of CKD, proteinuria and ESRD in patients with high alcohol consumption, (2) odds ratios, relative risks, hazard ratios or standardized incidence ratio with 95% confidence intervals (CI) were provided, and (3) a reference group composed of participants who did not consume alcohol.

Study eligibility was independently determined by the two investigators noted above. Differing decisions were resolved by mutual consensus. The quality of each study was independently evaluated by each investigator using Newcastle-Ottawa quality assessment scale<sup>24</sup> for observational studies and Jadad quality assessment scale<sup>25</sup> for RCTs.

## Data extraction

A standardized data collection form was used to extract the following information: last name of the first author, study design, year of study, country of origin, year of publication, sample size, characteristics of included participants, definition of high alcohol consumption, method used to diagnose CKD, proteinuria and ESRD, mean duration of follow up and adjusted effect estimates with 95% CI. The two investigators mentioned above independently performed this data extraction. Review Manager 5.2 software from the Cochrane Collaboration was used for data analysis. Point estimates and standard errors were extracted from individual studies and were combined by the generic inverse variance method of DerSimonian and Laird.<sup>26</sup> Given the high likelihood of between study variances, we used a random-effect model rather than a fixed-effect model. Statistical heterogeneity was assessed using the Cochran's Q test. This statistic is complemented with the I<sup>2</sup> statistic, which quantifies the proportion of the total variation across studies that is due to heterogeneity rather than chance. A value of I<sup>2</sup> of 0% to 25% represents insignificant heterogeneity, 26% to 50% low heterogeneity, 51% to 75% moderate heterogeneity, and > 75% high heterogeneity.<sup>27</sup> The presence of publication bias was assessed by funnel plots of the logarithm of odds ratios versus their standard errors.<sup>28</sup> The post hoc analysis assessing the sex-specific association between high alcohol consumption and CKD. In order to assess the risk of ESRD subgroups, we also performed a post hoc analysis for assessing the risk of developing ESRD related to diabetes (DM) and hypertension (HTN) in patients with high alcohol consumption.

## **Results**

Our search strategy yielded 13,533 potentially relevant articles. 12,474 articles were excluded based on title and abstract for clearly not fulfilling inclusion criteria on the basis of the type of article, study design, population, or outcome of interest. 1,059 articles underwent full-length article review. 1,041 articles were excluded (688 articles were not observational studies or RCTs and 353 articles did not report the outcomes of interest). Twenty observational studies from 18 articles with total of 292,431 patients were identified and included in the data analysis. There were no RCTs identified in this literature search. **Figure S1** outlines our search methodology and selection process.

#### The Risk of CKD in Patients with High Alcohol Consumption

Sixteen study samples (9 cohort, 1 case-control and 6 cross-sectional studies) with 212,918 patients were included in the data analysis for the risk of CKD in patients with high alcohol consumption. **Table 1** describes the detailed characteristics and quality assessment of the included studies. The pooled RR of CKD in patients with high alcohol consumption was 0.83 (95% CI 0.71-0.98, I<sup>2</sup> of 73%). **Figure 1** shows the forest plot of the included studies. When cross-sectional studies were excluded, the pooled RR for developing CKD was 0.82 (95% CI 0.72-0.93) as shown in **Figure S2**. The statistical heterogeneity was low with an I<sup>2</sup> of 28%. The post hoc analysis assessing the sex-specific association between high alcohol consumption and CKD demonstrated a pooled RR of 0.72 (95% CI 0.57-0.90) in males (**Figure S3**) and 0.78 (95% CI 0.58-1.03) in females (**Figure S4**).

#### The Risk of ESRD in Patients with High Alcohol Consumption

Five study samples (3 cohort studies and 2 case-control studies) with 80,583 patients were included in the data analysis for the risk of developing ESRD in patients with high alcohol consumption (**Table 2**). The pooled RR of ESRD in patients with high alcohol consumption was 1.00 (95% CI, 0.55-1.82,  $I^2$  of 61%). **Figure 2** shows the forest plot of the included studies.

The post hoc analysis assessing the association of high alcohol consumption and ESRD subgroups demontrated the pooled RRs of 2.23 (95% CI, 0.90-5.52) for ESRD related to HTN, 1.07 (0.26-4.31) for ESRD related to DM and 0.32 (95% CI, 0.05-2.27) for ESRD related to DM and HTN.

## The Risk of Proteinuria in Patients with High Alcohol Consumption

Four study samples (all cohort studies) with 140,686 patients were included in the data analysis for the association between proteinuria and high alcohol consumption (**Table 3**). The pooled RR of proteinuria in patients with high alcohol consumption was 0.85 (95% CI 0.62-1.17, I<sup>2</sup> of 82%) as shown in **Figure S5**.

#### Evaluation for publication bias

Funnel plots to evaluate publication bias for the risk of CKD, ESRD and proteinuria in patients with high alcohol consumption. The graphs are slight asymmetric and, thus, provide a suggestion to the presence of publication in favor of positive studies of the risk of CKD, proteinuria and ESRD. **Figure S6** demonstrates a funnel plot of 16 studies to assess the publication bias for the risk of CKD in patients with high alcohol consumption.

### **Discussions**

Our present meta-analysis results indicate an inverse association between high alcohol consumption and CKD in healthy adult males with an overall 0.72-fold decreased risk of CKD compared to those who did not regularly consume alcohol. However, our analysis did not demonstrate a significant association between high alcohol consumption and ESRD or proteinuria.

There are several plausible explanations for the inverse association of high alcohol consumption and CKD in adult males. Firstly, studies have demonstrated that alcohol consumption can increase high-density lipoprotein (HDL) and plasma endogenous tissue-type plasminogen activator levels and decrease platelet aggregration.<sup>29</sup> Due to estrogen effects, premenopausal women have better baseline atherosclerotic risk factors and lipid profiles, especially higher HDL levels compared to men. Alcohol consumption was also demontrated

to lower atherosclerotic risk and coronary heart disease in men.<sup>30</sup> The increase in HDL effect may play the important role in the inverse association of CKD in males with high alcohol consumption. Secondly, polyphenols in many alcohol beverages such as red wine were shown to have anti-oxidant properties in rat models<sup>31</sup>. It may reduce kidney injury by induction of glutathione peroxidase, catalase and superoxidase dismutase.<sup>31</sup> In addition, alcohol has shown to prevent renal ischemia and reperfusion injury in other animal models. It may prevent leukocyte recruitment and endothelial barrier damage.<sup>32</sup> Thirdly, the inverse association between high alcohol consumption and hyalinization of renal arterioles was shown in an autopsy study.<sup>33</sup> Lastly, several previous studies that demonstrated the association between high alcohol consumption and the risk of CKD and ESRD were casecontrol studies which may have potentially been prone to have recall bias since alcohol consumption was assessed after the renal damages occurred.<sup>8, 10</sup>

Although all included studies were of moderate to high quality (as evaluated by Newcastle-Ottawa scale), there are some limitations. Firstly, some studies were conducted based on selfreport, not a structured interview or medical record review. Although some studies have validated the use of self-reported alcohol consumption, under-reporting for alcohol consumption has been found especially in heavy alcohol drinkers.<sup>34</sup> However, we performed the study in high alcohol consumption which is less likely to be affected by misclassification by under-reporting. Secondly, there are statistical heterogeneities in the complete analysis. The potential sources of these heterogeneities include the difference in the diagnosis methodology of CKD, exposure definition (type of alcohol and amount of high alcohol consumption), the differences in confounder adjusted methods and the duration of the followup. However, we also performed sensitivity analysis by excluding cross-sectional studies, since they provided risk estimates at only point in time and had the great potential to only show part of any causal picture. Our sensitivity analysis also successfully shows an inverse association between heavy alcohol drinking and CKD with a low heterogeneity. In addition, the adjusted analysis for HTN in most of the included studies could have mitigated the adverse effect of high alcohol consumption on CKD outcome because high alcohol consumption may cause HTN, which is a known risk factor to CKD <sup>5</sup>. However, several included studies in this meta-analysis still showed the inverse association between high alcohol consumption and CKD when HTN was not included in their adjusted models.<sup>18, 23</sup>

This is a meta-analysis of observational studies with its inherent limitations. We systematically searched the literatures and there have been no RCTs conducted on these topics. Therefore, our meta-analysis can at best demonstrate an association but not a causal relationship. Most studies' outcome ascertainment for CKD were measured by the change of serum creatinine which is not ideal in many situations especially in extremely low or high muscle mass. Low serum creatinine levels may reflect severe liver disease and malnutrition due to high alcohol consumption.<sup>35</sup> Although most studies in this meta-analysis included body mass index (BMI) into their adjusted analysis, an alcoholic population is less sensitive given the high propensity for malnourishment. Consequently, BMI is not a good indicator of muscle mass in this population. Therefore, we need to interpret this inverse association between high alcohol consumption and CKD cautiously as excessive alcohol use can cause cirrhosis and increase mortality from accidents.<sup>5</sup> Moreover, severe cirrhosis subsequently may result in hepatorenal syndrome. There is a possible concern that this inverse association is due to competing risk, since those with high alcohol consumption may die of other causes. However, a study by Reynolds et al.<sup>23</sup> demonstrated that alcohol consumption was also inversely associated with all-cause mortality. In addition, our study also shows no significant association between heavy alcohol drinking and ESRD or proteinuria supporting insignificant risk for CKD in patients with high alcohol consumption.In conclusion, our study suggests a statistically significant inverse relationship of CKD in male adults with high alcohol consumption. There is no significant association between high alcohol consumption and the risk for developing proteinuria or ESRD.

Disclosure: None

Statement of Competing Financial Interests: No financial support. Authors declare no conflicts of interest.

## **<u>Reference</u>**

- Control, CfD, Prevention: National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. *Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention,* 201, 2011.
- Hsu, CY, Vittinghoff, E, Lin, F, Shlipak, MG: The incidence of end-stage renal disease is increasing faster than the prevalence of chronic renal insufficiency. *Ann Intern Med*, 141: 95-101, 2004.
- 3. Inker, LA, Levey, AS, Pandya, K, Stoycheff, N, Okparavero, A, Greene, T: Early change in proteinuria as a surrogate end point for kidney disease progression: an individual patient meta-analysis. *Am J Kidney Dis*, 64: 74-85, 2014.
- 4. Haynes, R, Staplin, N, Emberson, J, Herrington, WG, Tomson, C, Agodoa, L, Tesar, V, Levin, A, Lewis, D, Reith, C, Baigent, C, Landray, MJ: Evaluating the contribution of the cause of kidney disease to prognosis in CKD: results from the study of heart and renal protection (SHARP). *Am J Kidney Dis*, 64: 40-48, 2014.

- Organization, WH: Global status report on alcohol and health-2014, World Health Organization, 2014.
- Shankar, A, Klein, R, Klein, BE: The association among smoking, heavy drinking, and chronic kidney disease. *Am J Epidemiol*, 164: 263-271, 2006.
- Thakkinstian, A, Ingsathit, A, Chaiprasert, A, Rattanasiri, S, Sangthawan, P, Gojaseni, P, Kiattisunthorn, K, Ongaiyooth, L, Thirakhupt, P: A simplified clinical prediction score of chronic kidney disease: a cross-sectional-survey study. *BMC Nephrol*, 12: 45, 2011.
- 8. Perneger, TV, Whelton, PK, Puddey, IB, Klag, MJ: Risk of end-stage renal disease associated with alcohol consumption. *Am J Epidemiol*, 150: 1275-1281, 1999.
- Knight, EL, Stampfer, MJ, Rimm, EB, Hankinson, SE, Curhan, GC: Moderate alcohol intake and renal function decline in women: a prospective study. *Nephrol Dial Transplant*, 18: 1549-1554, 2003.
- Vupputuri, S, Sandler, DP: Lifestyle risk factors and chronic kidney disease. Ann Epidemiol, 13: 712-720, 2003.
- 11. Yamagata, K, Ishida, K, Sairenchi, T, Takahashi, H, Ohba, S, Shiigai, T, Narita, M, Koyama, A: Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. *Kidney Int*, 71: 159-166, 2007.
- 12. Buja, A, Scafato, E, Baggio, B, Sergi, G, Maggi, S, Rausa, G, Basile, A, Manzato, E, Ghirini, S, Perissinotto, E: Renal impairment and moderate alcohol consumption in the elderly. Results from the Italian Longitudinal Study on Aging (ILSA). *Public Health Nutr*, 14: 1907-1918, 2011.
- Menon, V, Katz, R, Mukamal, K, Kestenbaum, B, de Boer, IH, Siscovick, DS, Sarnak, MJ, Shlipak, MG: Alcohol consumption and kidney function decline in the elderly: alcohol and kidney disease. *Nephrol Dial Transplant*, 25: 3301-3307, 2010.

- Sanoff, SL, Callejas, L, Alonso, CD, Hu, Y, Colindres, RE, Chin, H, Morgan, DR, Hogan, SL: Positive association of renal insufficiency with agriculture employment and unregulated alcohol consumption in Nicaragua. *Ren Fail*, 32: 766-777, 2010.
- 15. Wakasugi, M, Kazama, JJ, Yamamoto, S, Kawamura, K, Narita, I: A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: a population-based cohort study. *Hypertens Res*, 36: 328-333, 2013.
- 16. Stengel, B, Tarver-Carr, ME, Powe, NR, Eberhardt, MS, Brancati, FL: Lifestyle factors, obesity and the risk of chronic kidney disease. *Epidemiology*, 14: 479-487, 2003.
- 17. Gutierrez, OM, Muntner, P, Rizk, DV, McClellan, WM, Warnock, DG, Newby, PK, Judd, SE: Dietary patterns and risk of death and progression to ESRD in individuals with CKD: a cohort study. *Am J Kidney Dis*, 64: 204-213, 2014.
- Schaeffner, ES, Kurth, T, de Jong, PE, Glynn, RJ, Buring, JE, Gaziano, JM: Alcohol consumption and the risk of renal dysfunction in apparently healthy men. *Arch Intern Med*, 165: 1048-1053, 2005.
- White, SL, Polkinghorne, KR, Cass, A, Shaw, JE, Atkins, RC, Chadban, SJ: Alcohol consumption and 5-year onset of chronic kidney disease: the AusDiab study. *Nephrol Dial Transplant*, 24: 2464-2472, 2009.
- 20. Funakoshi, Y, Omori, H, Onoue, A, Mihara, S, Ogata, Y, Katoh, T: Association between frequency of drinking alcohol and chronic kidney disease in men. *Environ Health Prev Med*, 17: 199-204, 2012.
- 21. Dunkler, D, Dehghan, M, Teo, KK, Heinze, G, Gao, P, Kohl, M, Clase, CM, Mann, JF, Yusuf, S, Oberbauer, R: Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. *JAMA Intern Med*, 173: 1682-1692, 2013.

- 22. Hsu, YH, Pai, HC, Chang, YM, Liu, WH, Hsu, CC: Alcohol consumption is inversely associated with stage 3 chronic kidney disease in middle-aged Taiwanese men. *BMC Nephrol*, 14: 254, 2013.
- 23. Reynolds, K, Gu, D, Chen, J, Tang, X, Yau, CL, Yu, L, Chen, CS, Wu, X, Hamm, LL, He, J: Alcohol consumption and the risk of end-stage renal disease among Chinese men. *Kidney Int*, 73: 870-876, 2008.
- 24. Stang, A: Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol*, 25: 603-605, 2010.
- 25. Jadad, AR, Moore, RA, Carroll, D, Jenkinson, C, Reynolds, DJ, Gavaghan, DJ, McQuay, HJ: Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials*, 17: 1-12, 1996.
- DerSimonian, R, Laird, N: Meta-analysis in clinical trials. *Control Clin Trials*, 7: 177-188, 1986.
- 27. Higgins, JP, Thompson, SG, Deeks, JJ, Altman, DG: Measuring inconsistency in metaanalyses. *BMJ*, 327: 557-560, 2003.
- Easterbrook, PJ, Berlin, JA, Gopalan, R, Matthews, DR: Publication bias in clinical research. *Lancet*, 337: 867-872, 1991.
- 29. Gaziano, JM, Buring, JE, Breslow, JL, Goldhaber, SZ, Rosner, B, VanDenburgh, M, Willett, W, Hennekens, CH: Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. *N Engl J Med*, 329: 1829-1834, 1993.
- 30. Tanasescu, M, Hu, FB, Willett, WC, Stampfer, MJ, Rimm, EB: Alcohol consumption and risk of coronary heart disease among men with type 2 diabetes mellitus. *J Am Coll Cardiol*, 38: 1836-1842, 2001.

- 31. Rodrigo, R, Rivera, G, Orellana, M, Araya, J, Bosco, C: Rat kidney antioxidant response to long-term exposure to flavonol rich red wine. *Life Sci*, 71: 2881-2895, 2002.
- 32. Shigematsu, S, Ishida, S, Hara, M, Takahashi, N, Yoshimatsu, H, Sakata, T, Korthuis, RJ: Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. *Free Radic Biol Med*, 34: 810-817, 2003.
- 33. Burchfiel, CM, Tracy, RE, Chyou, PH, Strong, JP: Cardiovascular risk factors and hyalinization of renal arterioles at autopsy. The Honolulu Heart Program. Arterioscler Thromb Vasc Biol, 17: 760-768, 1997.
- 34. Parekh, RS, Klag, MJ: Alcohol: role in the development of hypertension and end-stage renal disease. *Curr Opin Nephrol Hypertens*, 10: 385-390, 2001.
- 35. Takabatake, T, Ohta, H, Ishida, Y, Hara, H, Ushiogi, Y, Hattori, N: Low serum creatinine levels in severe hepatic disease. *Arch Intern Med*, 148: 1313-1315, 1988.

|               | Knight et al <sup>9</sup> | Vupputuri et al <sup>10</sup>      | Schaeffner et al <sup>18</sup>       | Shankar et al $(1)^6$ | Shankar et al $(2)^6$ | Yamagata et al <sup>11</sup>                      | White et al <sup>19</sup>            | Buja et al $(1)^{12}$ |
|---------------|---------------------------|------------------------------------|--------------------------------------|-----------------------|-----------------------|---------------------------------------------------|--------------------------------------|-----------------------|
| Country       | USA                       | USA                                | USA                                  | USA                   | USA                   | Japan                                             | Australia                            | Italy                 |
| Study design  | Cohort study              | Case-control                       | Cohort study                         | Cohort study          | Cross-sectional       | Cohort study                                      | Cohort study                         | Cohort study          |
|               |                           | study                              |                                      |                       | study                 |                                                   |                                      |                       |
| Year          | 2003                      | 2003                               | 2005                                 | 2005                  | 2005                  | 2007                                              | 2009                                 | 2010                  |
| Total number  | 1658                      | 1070                               | 11023                                | 3392                  | 4898                  | 123764                                            | 5807                                 | 1539                  |
| Study sample  | Female nurses;            | Hospital-based                     | Healthy male                         | Population-           | Population-based;     | Population-based;                                 | Population-based;                    | Population-           |
|               | aged 30-55 years          | cases and                          | physicians                           | based; male and       | male and female;      | male and female;                                  | male and female;                     | based; male and       |
|               |                           | community-                         |                                      | female; aged 43-      | aged 43-84 years      | aged 40 years or                                  | aged 25 years or                     | female; aged 65-      |
|               |                           | based controls;                    |                                      | 84 years              |                       | older                                             | older                                | 84 years              |
|               |                           | male and female;                   |                                      |                       |                       |                                                   |                                      |                       |
| Eve           | Current alashal           | Gurrant alashal                    | Current alashal                      | Current alashal       | Current alashal       | Alashal                                           | Current alashal                      | Current alashal       |
| definition    | consumption               | Current alcohol<br>consumption > 3 | $Current alcohol \\ consumption > 7$ | consumption $> 1$     | consumption > 1       | $\frac{\text{Alcollol}}{\text{consumption}} > 20$ | consumption >                        |                       |
| definition    | between 15 and            | drinks/d                           | drinks/week                          | serving/d             | serving/d             | g/d                                               | $\frac{20 \alpha/d}{30 \alpha/d}$    | 24  g/d               |
|               | 60  g/d                   | di liiks/ d                        | drinks/ week                         | ser ving/d            | ser vilig/u           | gru                                               | Jogra                                | 24 g/u                |
| Exposure      | Self-report using         | telephone                          | Self-report using                    | Interview using       | Interview using       | Interview using                                   | Interviewer- and                     | Interview using       |
| measurement   | structured                | interview using                    | structured                           | structured            | structured            | structured                                        | self-administered                    | structured            |
|               | questionnaires            | structured                         | questionnaires                       | questionnaires        | questionnaires        | questionnaires                                    | standardized                         | questionnaires        |
|               | Î                         | questionnaires                     | <u>^</u>                             | <u>^</u>              | -                     | <u>^</u>                                          | questionnaires                       | Î                     |
| Outcome       | Decline in GFR $\geq$     | Newly-                             | Reduced eGFR $\leq$                  | Incident CKD,         | Prevalent CKD,        | Incident CKD,                                     | De novo eGFR <                       | Incident CKD,         |
| definition    | 25%                       | diagnosed CKD                      | 55 ml/min                            | defined as GFR        | defined as GFR <      | defined as eGFR <                                 | 60ml/min/1.73 m2,                    | defined as GFR        |
|               |                           | with at least 2                    |                                      | < 60 ml/min/1.73      | 60 ml/min/1.73        | $60 \text{ ml/min}/1.73 \text{ m}^2$              | defined as 5-year                    | < 60 ml/min/1.73      |
|               |                           | values of SCr >                    |                                      | m2 at 5-year          | m2 at baseline        |                                                   | decline in eGFR of                   | m2 at baseline        |
|               |                           | 1.5 mg/dl                          |                                      | follow-visit          |                       |                                                   | $\geq 10\%$ with eGFR >              |                       |
|               |                           |                                    |                                      | among                 |                       |                                                   | 60 ml/min/1.73m2                     |                       |
|               |                           |                                    |                                      | participants who      |                       |                                                   | at baseline and a                    |                       |
|               |                           |                                    |                                      | CKD at basaling       |                       |                                                   | 111111111111111111111111111111111111 |                       |
| Outcome       | SCr was measured          | ICD 0 discharge                    | SCr was measured                     | SCr was               | SCr was measured      | SCr was measured                                  | SCr was measured                     | SCr was               |
| ascertainment | at baseline (1989)        | diagnosis                          | 14 years after                       | measured at 5-        | at haseline eGFR      | annually eGFR                                     | at 5-year follow-up                  | measured at           |
| uscertainment | and follow up             | followed by                        | baseline                             | vear follow-up        | was calculated        | was calculated                                    | visit eGFR was                       | follow-up visit       |
|               | visit (2000).             | comprehensive                      | assessment. eGFR                     | visit. eGFR was       | using MDRD            | using MDRD                                        | calculated using                     | eGFR was              |
|               | eGFR was                  | chart reviews                      | was calculated                       | calculated using      | formula.              | formula.                                          | MDRD formula                         | calculated using      |
|               | calculated using          |                                    | using Cockcroft-                     | MDRD formula.         |                       |                                                   |                                      | MDRD formula.         |
|               | MDRD formula              |                                    | Gault equation.                      |                       |                       |                                                   |                                      |                       |

# Table 1: Main characteristics of the studies included for the risk of CKD in patients with high alcohol consumption

| Confounder<br>adjusted                                | Age, BMI, protein<br>intake,<br>hypercholesterole<br>mia, diabetes,<br>hypertension and<br>smoking status | Age, race,<br>education, BMI,<br>analgesic use,<br>smoking,<br>hypertension,<br>diabetes,<br>respondent status | Age, BMI,<br>smoking, physical<br>exercise, diabetes,<br>family history of<br>early MI and<br>treatment<br>assignment | Age, sex,<br>education, BMI,<br>current NSAID<br>use,<br>hypertension,<br>diabetes,<br>cardiovascular<br>disease, smoking<br>status | Age, sex,<br>education, BMI,<br>current NSAIDs<br>use, hypertension,<br>diabetes,<br>cardiovascular<br>disease, current<br>smoking status | Age, GFR,<br>diabetes,<br>hypertension,<br>hypercholesterolem<br>ia, low-HDL,<br>hypertriglyceridem<br>ia, obesity,<br>smoking | Age, sex, GFR,<br>hypertension,<br>systolic blood<br>pressure, diabetes,<br>HbA1C, smoking<br>status, physical<br>activity and waist<br>to hip ratio | Age, BMI,<br>smoking,<br>education,<br>antihypertensive<br>and lipid-<br>lowering<br>medications,<br>isolated systolic<br>hypertension,<br>diabetes, blood<br>fibrinogen, total<br>cholesterol |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality<br>assessment<br>(Newcastle-<br>Ottawa scale) | Selection: 3<br>Comparability: 2<br>Outcome: 3                                                            | Selection: 4<br>Comparability:2<br>Exposure: 3                                                                 | Selection: 2<br>Comparability: 2<br>Outcome:3                                                                         | Selection: 4<br>Comparability: 2<br>Outcome:3                                                                                       | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                                                            | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                                                 | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                                                                       | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                                                                                                                 |

Abbreviation: BMI, body mass index; CKD, chronic kidney disease; GFR, glomerular filtration rate; HbA1C, Glycated hemoglobin; HDL, high-density lipoprotein; ICD-9, The International Classification of Diseases-9; MI, myocardial infarction; MDRD, Modification of Diet in Renal Disease; NSAIDs, nonsteroidal anti-inflammatory drugs; SCr, serum creatinine; UACR, urine albumin to creatinine ratio.

|                         | Buja et al $(2)^{12}$                                                  | Menon et al <sup>13</sup>                                                          | Sanoff et al <sup>14</sup>                      | Thakkinstian et al <sup>7</sup>                                                                                                                                                                                | Funakoshi et al <sup>20</sup>                                | Dunkler et al <sup>21</sup>                                                                                                                                                                                                 | Hsu et al <sup>22</sup>                                | Wakasugi et al <sup>15</sup>                                                                            |
|-------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Country                 | Italy                                                                  | USA                                                                                | Nicaragua                                       | Thailand                                                                                                                                                                                                       | Japan                                                        | Multi-national<br>study                                                                                                                                                                                                     | Taiwan                                                 | Japan                                                                                                   |
| Study design            | Cross-sectional study                                                  | Cohort study                                                                       | Cross-sectional<br>study                        | Cross-sectional study                                                                                                                                                                                          | Cross-<br>sectional study                                    | Cohort study                                                                                                                                                                                                                | Cross-sectional study                                  | Cohort study                                                                                            |
| Year                    | 2010                                                                   | 2010                                                                               | 2010                                            | 2011                                                                                                                                                                                                           | 2012                                                         | 2013                                                                                                                                                                                                                        | 2013                                                   | 2013                                                                                                    |
| Total number            | 3404                                                                   | 4343                                                                               | 997                                             | 3459                                                                                                                                                                                                           | 9196                                                         | 6213                                                                                                                                                                                                                        | 27253                                                  | 4902                                                                                                    |
| Study sample            | Population-based;<br>male and female;<br>aged 65-84 years              | Population-<br>based; male and<br>female; aged ≥<br>65 years                       | Population-<br>based; male and<br>female        | Population-based ;<br>male and female;<br>aged ≥ 18 years                                                                                                                                                      | Population-<br>based; adult<br>male only                     | Subjects with<br>vascular disease<br>or type 2 DM with<br>end-organ<br>damage; Male and<br>female; aged $\geq$ 55<br>years                                                                                                  | Population-based;<br>adult male and<br>female          | Population-based;<br>male and female;<br>aged 40-79 years                                               |
| Exposure definition     | Current alcohol<br>consumption > 24 g/d                                | Current alcohol<br>consumption ≥14<br>drinks/week                                  | Beer<br>consumption:<br>yes/no                  | Alcohol<br>consumption: yes/no                                                                                                                                                                                 | Alcohol<br>consumption<br>everyday                           | Alcohol<br>consumption $\geq 5$<br>drinks/week                                                                                                                                                                              | Frequent or regular alcohol drinking                   | Alcohol consumption<br>> 20 g/d                                                                         |
| Exposure<br>measurement | Interview using<br>structured<br>questionnaires                        | Interview using<br>structured<br>questionnaires                                    | Interview using<br>structured<br>questionnaires | interview                                                                                                                                                                                                      | Interview<br>using<br>structured<br>questionnaires           | Interview using<br>structured<br>questionnaires                                                                                                                                                                             | Self-report using<br>structured<br>questionnaires      | Self-reported using<br>structured<br>questionnaires                                                     |
| Outcome<br>definition   | Prevalent CKD,<br>defined as GFR < 60<br>ml/min/1.73 m2 at<br>baseline | rapid kidney<br>function decline<br>as an Annual<br>eGFR loss > 3<br>ml/min/1.73m2 | eGFR ≤ 60<br>ml/min/1.73 m2                     | Prevalent CKD,<br>defined as GFR >60<br>with hematuria<br>and/or albumin-<br>creatinine ratio $\geq$ 30<br>mg/g (stage I, II) or<br>GFR < 60<br>ml/min/1.73m2,<br>regardless of kidney<br>damage (stage III-V) | CKD, defined<br>as GFR < 60<br>ml/min/1.73<br>m2 at baseline | CKD, defined as<br>at least 1 of 1)<br>new<br>microalbuminuria<br>(UACR ><br>3.4mg/mmol) or<br>new<br>macroalbuminuria<br>(UACR ><br>33.9mg/mmol)<br>with at least 30%<br>increase from<br>baseline UACR,<br>GFR-decline of | CKD, defined as<br>eGFR < 60 but ≥30<br>ml/min/1.73 m2 | Mild CKD as<br>incident proteinuria,<br>defined as a dipstick<br>urinalysis score of<br>≥1+ proteinuria |

# Table 1: Main characteristics of the studies included for the risk of CKD in patients with high alcohol consumption (Cont.)

|                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                |                                                                                                          |                                                                                |                                                                                                                    | >5%/year or end-<br>stage renal disease<br>(eGFR < 15<br>ml/min/1.73m2 or<br>renal replacement<br>therapy > 2<br>months)                                                             |                                                                                                                                    |                                                                                                                      |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Outcome<br>ascertainment                              | SCr was measured at<br>baseline. eGFR was<br>calculated using<br>MDRD formula.                                                                                                       | Cystatin C was<br>measured at year<br>3 and year 7.<br>eGFR was<br>calculated from<br>cystatin C                                                                                                                                               | SCr was<br>measured at<br>baseline. eGFR<br>was calculated<br>using MDRD<br>formula.                     | SCr was measured at<br>baseline. eGFR was<br>calculated using<br>MDRD formula. | SCr was<br>measured at<br>baseline.<br>eGFR was<br>calculated<br>using MDRD<br>formula.                            | Urinary albumin-<br>creatinine ratio,<br>and SCr were<br>measured at<br>baseline and after<br>5 years of follow-<br>up. eGFR was<br>calculated using<br>MDRD and CKD-<br>EPI formula | SCr was measured at<br>baseline. eGFR was<br>calculated using<br>MDRD formula.                                                     | Urine dipstick for<br>proteinuria was tested<br>at 1-year follow-up<br>visit                                         |
| Confounder<br>adjusted                                | Age, BMI, smoking,<br>education,<br>antihypertensive and<br>lipid-lowering<br>medications, isolated<br>systolic hypertension,<br>diabetes, blood<br>fibrinogen, total<br>cholesterol | Age, race,<br>smoking status,<br>diabetes, systolic<br>and diastolic<br>blood pressure,<br>antihypertensive<br>medication,<br>LDL-C, HDL-C,<br>prevalent<br>cardiovascular<br>disease, heart<br>failure, C-<br>reactive protein,<br>fibrinogen | Age, sex,<br>systolic and<br>diastolic blood<br>pressure,<br>diabetes, family<br>history of ESRD,<br>BMI | None                                                                           | Age, BMI,<br>hypertension,<br>diabetes,<br>hypercholester<br>olemia,<br>smoking status<br>and physical<br>activity | Age, diabetes<br>duration,<br>albuminuria<br>status, GFR, sex,<br>treatment<br>assignment,<br>UACR to<br>progression                                                                 | Age, smoking, betel<br>nut chewing,<br>hypertension,<br>diabetes, anemia,<br>hyperlipidemia, BMI,<br>hyperuricemia,<br>proteinuria | Age, sex, smoking<br>status, BMI, exercise,<br>eating pattern,<br>hypertension,<br>diabetes,<br>hypercholesterolemia |
| Quality<br>assessment<br>(Newcastle-<br>Ottawa scale) | Selection: 4<br>Comparability: 2<br>Exposure/outcome: 3                                                                                                                              | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                                                                                                                                                                 | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                           | Selection: 4<br>Comparability: 0<br>Exposure/outcome: 3                        | Selection: 4<br>Comparability:<br>2<br>Outcome:3                                                                   | Selection: 4<br>Comparability: 2<br>Outcome: 3                                                                                                                                       | Selection: 4<br>Comparability: 2<br>Exposure/outcome: 3                                                                            | Selection: 4<br>Comparability: 2<br>Exposure/outcome: 2                                                              |

Abbreviation: BMI, body mass index; CKD, chronic kidney disease; GFR, glomerular filtration rate; HbA1C, Glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction; MDRD, Modification of Diet in Renal Disease; NSAIDs, nonsteroidal anti-inflammatory drugs; SCr, serum creatinine; UACR, urine albumin to creatinine ratio.

|                              | Perneger et al <sup>8</sup>                                                                           | Vupputuri et al <sup>10</sup>                                                                         | Stengel et al <sup>16</sup>                                                                                                                                           | Reynolds et al <sup>23</sup>                                                                                                                                      | Guatierrez et al <sup>17</sup>                                                                                                                                          |
|------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country                      | USA                                                                                                   | USA                                                                                                   | USA                                                                                                                                                                   | China                                                                                                                                                             | USA                                                                                                                                                                     |
| Study design                 | Case-control study                                                                                    | Case-control study                                                                                    | Cohort study                                                                                                                                                          | Cohort study                                                                                                                                                      | Cohort study                                                                                                                                                            |
| Year                         | 1999                                                                                                  | 2003                                                                                                  | 2003                                                                                                                                                                  | 2008                                                                                                                                                              | 2014                                                                                                                                                                    |
| Total number                 | 912                                                                                                   | 1070                                                                                                  | 9028                                                                                                                                                                  | 65601                                                                                                                                                             | 3972                                                                                                                                                                    |
| Study sample                 | community-based cases<br>and controls; male and<br>female; aged 20-64 years                           | Hospital-based cases and<br>community-based controls;<br>male and female; aged 30-83<br>years         | Population-based; male and female; aged 30-75 years                                                                                                                   | Population-based; male only;<br>aged 40 years or older                                                                                                            | Population-based; Subjects<br>with CKD; male and female;<br>aged 45 years or older                                                                                      |
| Exposure<br>definition       | Current alcohol<br>consumption > 2 drinks/d<br>Drinking pattern:<br>> 3 d/week and ≥ 5<br>drinks/d    | Current alcohol consumption $\geq$ 3 drinks/d                                                         | Current alcohol consumption $\geq 1$ times/d                                                                                                                          | Current alcohol consumption $\geq 21$ drinks/week                                                                                                                 | The highest quartile in alcohol/salad dietary pattern score                                                                                                             |
| Exposure                     | telephone interview using                                                                             | telephone interview using                                                                             | Interview using structured                                                                                                                                            | Interview using structured                                                                                                                                        | Self-reported using mailed                                                                                                                                              |
| measurement                  | structured questionnaires                                                                             | structured questionnaires                                                                             | questionnaires                                                                                                                                                        | questionnaires                                                                                                                                                    | structured questionnaires                                                                                                                                               |
| Outcome definition           | New-onset ESRD requiring dialysis                                                                     | New-onset ESRD requiring dialysis                                                                     | Either<br>1) treatment of ESRD due to<br>any cause, or                                                                                                                | ESRD, defined as renal<br>replacement therapy (dialysis<br>or renal transplantation) or                                                                           | Incident ESRD                                                                                                                                                           |
|                              |                                                                                                       |                                                                                                       | 2) death related to CKD                                                                                                                                               | death from renal failure                                                                                                                                          |                                                                                                                                                                         |
| Outcome<br>ascertainment     | Population-based registry<br>of persons undergoing<br>treatment for ESRD                              | ICD-9 discharge diagnosis,<br>followed by comprehensive<br>chart reviews                              | NHANE II medicare ESRD<br>registry data and mortality<br>study                                                                                                        | In-person/proxy interview,<br>medical record and death<br>certificate review                                                                                      | US Renal Data System                                                                                                                                                    |
| Confounder<br>adjusted       | Age, sex, race,<br>hypertension, income,<br>diabetes, acetaminophen<br>use, smoking and opiate<br>use | Age, race, education, BMI,<br>analgesic use, smoking,<br>hypertension, diabetes,<br>respondent status | Physical activity, smoking,<br>BMI, age, gender, race,<br>diabetes, cardiovascular<br>disease, hypertension,<br>systolic blood pressure,<br>serum cholesterol and GFR | Age, geographic region,<br>urbanization, education, BMI,<br>physical activity, smoking<br>status, systolic blood pressure,<br>diabetes, cardiovascular<br>disease | Age, sex, race, geographic<br>region, energy intake, lifestyle<br>factors, comorbid conditions,<br>education, annual family<br>income, log-transformed<br>UACR and eGFR |
| Quality                      | Selection: 4                                                                                          | Selection: 4                                                                                          | Selection: 4                                                                                                                                                          | Selection: 4                                                                                                                                                      | Selection: 3                                                                                                                                                            |
| assessment                   | Comparability: 2                                                                                      | Comparability:2                                                                                       | Comparability: 2                                                                                                                                                      | Comparability: 2                                                                                                                                                  | Comparability: 2                                                                                                                                                        |
| (Newcastle-<br>Ottawa scale) | Exposure: 3                                                                                           | Exposure: 3                                                                                           | Outcome:3                                                                                                                                                             | Outcome:3                                                                                                                                                         | Outcome: 3                                                                                                                                                              |

## Table 2: Main characteristics of the studies included for the risk of ESRD in patients with high alcohol consumption

Abbreviation: BMI, body mass index; CKD, chronic kidney disease; GFR, glomerular filtration rate; HbA1C, Glycated hemoglobin; HDL, high-density lipoprotein; ICD-9, The International Classification of Diseases-9; MI, myocardial infarction; MDRD, Modification of Diet in Renal Disease; NSAIDs, nonsteroidal anti-inflammatory drugs; SCr, serum creatinine; UACR, urine albumin to creatinine ratio.

|                              | 11                                                                                                                   | 10                                                                                                                                                                 | 21                                                                                                                         | 15                                                                                                                |
|------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                              | Yamagata et al <sup>11</sup>                                                                                         | White et al <sup>19</sup>                                                                                                                                          | Dunkler et al <sup>21</sup>                                                                                                | Wakasugi et al <sup>15</sup>                                                                                      |
| Country                      | Japan                                                                                                                | Australia                                                                                                                                                          | Multi-national study                                                                                                       | Japan                                                                                                             |
| Study design                 | Cohort study                                                                                                         | Cohort study                                                                                                                                                       | Cohort study                                                                                                               | Cohort study                                                                                                      |
| Year                         | 2007                                                                                                                 | 2009                                                                                                                                                               | 2013                                                                                                                       | 2013                                                                                                              |
| Total number                 | 123764                                                                                                               | 5807                                                                                                                                                               | 6213                                                                                                                       | 4902                                                                                                              |
| Study sample                 | Population-based; male and<br>female; aged 40 years or<br>older                                                      | Population-based; male and<br>female; aged 25 years or<br>older                                                                                                    | Subjects with vascular disease<br>or type 2 DM with end-organ<br>damage; Male and female;<br>aged $\geq$ 55 years          | Population-based; male<br>and female; aged 40-79<br>years                                                         |
| Exposure                     | Alcohol consumption > 20                                                                                             | Current alcohol consumption                                                                                                                                        | Alcohol consumption $\geq 5$                                                                                               | Alcohol consumption >                                                                                             |
| definition                   | g/d                                                                                                                  | $\geq$ 30g/d                                                                                                                                                       | drinks/week                                                                                                                | 20 g/d                                                                                                            |
| Exposure                     | Interview using structured                                                                                           | Interviewer- and self-                                                                                                                                             | Interview using structured                                                                                                 | Self-reported using                                                                                               |
| measurement                  | questionnaires                                                                                                       | administered standardized questionnaires                                                                                                                           | questionnaires                                                                                                             | structured questionnaires                                                                                         |
| Outcome                      | Incident proteinuria, defined                                                                                        | De novo albuminuria,                                                                                                                                               | New microalbuminuria                                                                                                       | Incident proteinuria,                                                                                             |
| definition                   | as dipstick proteinuria $\geq 1+$                                                                                    | defined as a doubling of<br>ACR over 5 years with a<br>final ACR $\geq$ 2.5 in males and<br>$\geq$ 3.5 in females, in the<br>absence of albuminuria at<br>baseline | (UACR > 3.4mg/mmol) or<br>new macroalbuminuria<br>(UACR > 33.9mg/mmol) with<br>at least 30% increase from<br>baseline UACR | defined as a dipstick<br>urinalysis score of ≥1+<br>proteinuria                                                   |
| Outcome                      | Urine dipstick was measured                                                                                          | Urine albumin was measured                                                                                                                                         | Urinary albumin-creatinine                                                                                                 | Urine dipstick for                                                                                                |
| ascertainment                | annually.                                                                                                            | at 5-year follow-up visit.                                                                                                                                         | ratio was measured at baseline<br>and after 5 years of follow-up.                                                          | proteinuria was tested at<br>1-year follow-up visit                                                               |
| Confounder<br>adjusted       | Age, GFR, diabetes,<br>hypertension,<br>hypercholesterolemia, low-<br>HDL, hypertriglyceridemia,<br>obesity, smoking | Age, sex, GFR, hypertension,<br>systolic blood pressure,<br>diabetes, HbA1C, smoking<br>status, physical activity and<br>waist to hip ratio                        | Age, diabetes duration,<br>albuminuria status, GFR, sex,<br>treatment assignment, UACR<br>to progression                   | Age, sex, smoking<br>status, BMI, exercise,<br>eating pattern,<br>hypertension, diabetes,<br>hypercholesterolemia |
| Quality                      | Selection: 4                                                                                                         | Selection: 4                                                                                                                                                       | Selection: 4                                                                                                               | Selection: 4                                                                                                      |
| assessment                   | Comparability: 2                                                                                                     | Comparability: 2                                                                                                                                                   | Comparability: 2                                                                                                           | Comparability: 2                                                                                                  |
| (Newcastle-<br>Ottawa scale) | Outcome: 3                                                                                                           | Outcome: 3                                                                                                                                                         | Outcome: 3                                                                                                                 | Exposure/outcome: 2                                                                                               |

## Table 3: Main characteristics of the studies included for the risk of proteinuria in patients with high alcohol consumption

Abbreviation: UACR, urine albumin to creatinine ratio; BMI, body mass index; CKD, chronic kidney disease; GFR, glomerular filtration rate; HbA1C, Glycated hemoglobin; HDL, highdensity lipoprotein; MI, myocardial infarction; MDRD, Modification of Diet in Renal Disease; NSAIDs, nonsteroidal anti-inflammatory drugs; SCr, serum creatinine.

## Figure legend

**Figure 1:** Forest plot of the included studies comparing risk of CKD in patients with high alcohol consumption and those who did not; square data markers represent risk ratios (RRs); horizontal lines, the 95% CIs with marker size reflecting the statistical weight of the study using random-effects meta-analysis. A diamond data marker represents the overall RR and 95% CI for the outcome of interest.

**Figure 2:** Forest plot of the included studies comparing risk of ESRD in patients with high alcohol consumption and those who did not; square data markers represent risk ratios (RRs); horizontal lines, the 95% CIs with marker size reflecting the statistical weight of the study using random-effects meta-analysis. A diamond data marker represents the overall RR and 95% CI for the outcome of interest.

## Supplementary data

**Item S1**: Literature search strategy for Database: Ovid, MEDLINE, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials.

**Figure S1:** Outline of our search methodology. Abbreviation: CKD, chronic kidney disease; ESRD, end stage renal disease; RCTs, randomized controlled trials.

**Figure S2**: Forest plot of the included studies (excluding cross-sectional studies) comparing risk of CKD in patients with high alcohol consumption and those who did not.

**Figure S3**: Forest plot of the post hoc analysis assessing association between high alcohol consumption and CKD in males.

**Figure S4**: Forest plot of the post hoc analysis assessing association between high alcohol consumption and CKD in females.

**Figure S5:** Forest plot of the included studies comparing risk of proteinuria in patients with high alcohol consumption and those who did not.

**Figure S6:** Funnel plot of 16 studies included in the meta-analysis for the risk of CKD in patients with high alcohol consumption. The graph is fairly asymmetric and suggests the presence of publication in favor of positive studies. RR = risk ratio, SE = standard error.



Forest plot of the included studies comparing risk of CKD in patients with high alcohol consumption and those who did not; square data markers represent risk ratios (RRs); horizontal lines, the 95% CIs with marker size reflecting the statistical weight of the study using random-effects meta-analysis. A diamond data marker represents the overall RR and 95% CI for the outcome of interest. 248x129mm (72 x 72 DPI)



Forest plot of the included studies comparing risk of ESRD in patients with high alcohol consumption and those who did not; square data markers represent risk ratios (RRs); horizontal lines, the 95% CIs with marker size reflecting the statistical weight of the study using random-effects meta-analysis. A diamond data marker represents the overall RR and 95% CI for the outcome of interest. 248x67mm (72 x 72 DPI)