End-of-Life Care Intensity for Physicians, Lawyers, and the General Population

Care at the end of life must balance intensity of treatment with quality of life. Previous research has not determined whether physicians, the group most familiar with end-of-life care, receive higher or lower intensity end-of-life treatments compared with nonphysicians.

Methods | Non–health maintenance organization Medicare beneficiaries aged 66 years or older who died between 2004 and 2011 in Massachusetts, Michigan, Utah, and Vermont were included due to availability of electronic death records and ability to link to Medicare. The Partners human research committee determined the study was not human research.

Death records were not available for Massachusetts in 2011 and Utah for 2004 through 2005, and approximately 10% of decedents could not be linked to Medicare claims. Death certificates documented age, education, Social Security number, and usual industry and occupation (the type of job engaged in for most of his/her working life). Industry and occupation are typically provided by family members to the funeral director and are highly accurate.

From Medicare records, we obtained data on 5 validated measures of end-of-life care intensity during the last 6 months of life: surgery, hospice care, intensive care unit (ICU)...

Table 1. Characteristics of Deceased Physicians, Lawyers, and General Population in 4 States, 2004-2011

<table>
<thead>
<tr>
<th>Education Level</th>
<th>Physicians (n = 2396)</th>
<th>Lawyers (n = 2081)</th>
<th>General Population (n = 665,579)</th>
</tr>
</thead>
<tbody>
<tr>
<td><College</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥Some college</td>
<td>2376 (100.0) [100.0-100.0]</td>
<td>2022 (97.8) [97.1-98.4]</td>
<td>159,255 (24.3) [24.2-24.4]</td>
</tr>
</tbody>
</table>

*Age of 66 years or older and receiving Medicare coverage at the time of death.
*Unless otherwise indicated.
*Total varies in column due to missing data. Data on deaths were not available in electronic format for 2011 from Massachusetts and for 2004 and 2005 from Utah.
*Excludes lawyers and health care workers.
*Race/ethnicity has been shown in prior work to be associated with end-of-life care intensity and therefore was included in this analysis. The race/ethnicity variable is contained in Medicare’s enrollment data/master beneficiary file. Information on race/ethnicity is obtained from the Social Security Administration, which obtains the information from the beneficiary.
Table 2. End-of-Life Care Intensity for Physicians, Lawyers, and the General Population in 4 States, 2004-2011

<table>
<thead>
<tr>
<th>Measure</th>
<th>Unadjusted</th>
<th>Adjusted</th>
<th>P Value</th>
<th>Unadjusted</th>
<th>Adjusted</th>
<th>P Value</th>
<th>Unadjusted</th>
<th>Adjusted</th>
<th>P Value</th>
<th>Unadjusted</th>
<th>Adjusted</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died in hospital</td>
<td>725 (30.3)</td>
<td>740 (35.6)</td>
<td><.001</td>
<td>2248 (33.8)</td>
<td>2242 (33.8)</td>
<td><.001</td>
<td><.01</td>
<td>27.9 (26.1-29.7)</td>
<td>32.7 (30.7-34.8)</td>
<td><.001</td>
<td>.78</td>
<td></td>
</tr>
<tr>
<td>Last 6 mo of life</td>
<td>619 (29.8)</td>
<td>618 (30.6)</td>
<td>.06</td>
<td>1873 (28.2)</td>
<td>1873 (28.2)</td>
<td>.06</td>
<td>.11</td>
<td>25.1 (23.4-26.9)</td>
<td>27.8 (26.1-29.1)</td>
<td>.12</td>
<td>2.74 (2.72-2.76)</td>
<td></td>
</tr>
<tr>
<td>Hospice</td>
<td>1042 (43.5)</td>
<td>845 (40.6)</td>
<td>.09</td>
<td>433 (64.5)</td>
<td>383 (59.6)</td>
<td>.83</td>
<td>.01</td>
<td>46.3 (44.2-48.3)</td>
<td>43.8 (41.6-44.1)</td>
<td>.12</td>
<td>4.46 (4.43-4.48)</td>
<td></td>
</tr>
<tr>
<td>ICU admission</td>
<td>679 (28.3)</td>
<td>597 (28.7)</td>
<td>.80</td>
<td>199 (29.9)</td>
<td>199 (29.9)</td>
<td>.80</td>
<td>.07</td>
<td>25.8 (24.0-26.5)</td>
<td>25.7 (23.9-27.6)</td>
<td>.97</td>
<td>27.1 (27.1-27.9)</td>
<td></td>
</tr>
<tr>
<td>Expenditures, $</td>
<td>229,810 (215,377-245,924)</td>
<td>253,336 (233,345-263,927)</td>
<td><.01</td>
<td>229,810 (215,377-245,924)</td>
<td>253,336 (233,345-263,927)</td>
<td><.01</td>
<td>.02</td>
<td>228,390 (212,400-244,300)</td>
<td>228,390 (212,400-244,300)</td>
<td><.01</td>
<td>.06</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- p < .05 was considered significant.
- Data are expressed as unadjusted No. (%) [95% CI] unless otherwise indicated.
- Adjusted for race, sex, age-adjusted Charlson Comorbidity Index, race/ethnicity, and poverty status.
- The adjusted analyses were limited to patients with at least a college education. Education was missing for 20 physicians.
- Data are expressed as mean (95% CI).
- Data are expressed as adjusted % (95% CI) unless otherwise indicated.
- Comparison is lawyers vs general population.
- Comparison is physicians vs general population.
- Comparison is physicians vs lawyers.
- Comparison is lawyers vs general population.
- Comparison is physicians vs general population.
- Comparison is physicians vs general population.
- Data are expressed as adjusted % (95% CI) unless otherwise indicated.
- Adjusted for race, sex, age-adjusted Charlson Comorbidity Index, race/ethnicity, and poverty status.
- The adjusted analyses were limited to patients with at least a college education. Education was missing for 20 physicians.
- Data are expressed as mean (95% CI).
- Data are expressed as adjusted % (95% CI) unless otherwise indicated.
- Adjustment is lawyers vs general population.
- Adjustment is physicians vs general population.
- Adjustment is physicians vs lawyers.
- Adjustment is physicians vs general population.

Discussion

For 3 of 5 end-of-life care intensity measures, physicians received significantly less intensive care than the general population. Although not large, these differences suggest less aggressive care for physicians. The possible reasons physicians received less intense end-of-life care than others could be knowledge of its burdens and futility as well as the benefits and the financial resources to pay for other treatment options, such as palliative care or skilled nursing required for death at home.

In contrast, only 1 measure differed between physicians and lawyers. Economic resources and education may therefore contribute to end-of-life-care decisions. However, the lower rates of hospital deaths of physicians compared with lawyers suggest that resources may promote home deaths, actual experience with hospital deaths may differentially motivate physicians to avoid them.

Study limitations include the use of retrospective data and omission of unmeasured confounders, particularly income, although this is partially addressed by controlling for hospital referral region and making comparisons with lawyers. Second, this study does not address complex decision-making processes nor satisfaction with end-of-life care. Third, we could not identify physicians' specialty or professional experience with end-of-life care. Fourth, death data from some states for selected years were not available. Fifth, data were available on only a limited number of states.

These findings could inform how health professionals communicate with patients about end-of-life care choices. For example, family members of critically ill patients sometimes seek
reassurance from physicians that their loved one is receiving the same type of care that a physician would receive.

Joel S. Weissman, PhD
Zara Cooper, MD, MSc
Joseph A. Hyder, MD, PhD
Stuart Lipsitz, ScD
Wei Jiang, MSc
Michael J. Zinner, MD
Holly G. Prigerson, PhD

Author Affiliations: Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, Massachusetts (Weissman, Cooper, Lipsitz, Jiang, Zinner), Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota (Hyder); Center for Research on End of Life Care, Weill Cornell Medicine, New York, New York (Prigerson).

Corresponding Author: Joel S. Weissman, PhD, Center for Surgery and Public Health, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont St, Ste 4-020X, Boston, MA 02120 (jweissman@partners.org).

Author Contributions: Dr Weissman had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Weissman, Cooper, Hyder, Lipsitz, Zinner, Prigerson. Acquisition, analysis, or interpretation of data: Weissman, Cooper, Hyder, Lipsitz, Jiang, Prigerson. Drafting of the manuscript: Weissman, Cooper, Lipsitz. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Lipsitz, Jiang. Administrative, technical, or material support: Weissman, Cooper. Study supervision: Weissman, Lipsitz, Zinner.

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Additional Contributions: We thank Bruce Cohen, PhD (Massachusetts Department of Public Health), for help in acquiring state death data and overall guidance, and Nathanael Hevelone, MPH (Coviden/Medtronic), and Richard Sterling Haring, DO (Brigham and Women's Hospital), for contributions to the construction of the database. We are indebted to the departments of public health in Massachusetts, Vermont, Michigan, and Utah that provided the electronic death certificate data and to Ellen Goodman (Institute for Healthcare Improvement, the Conversation Project) for advice early in the research process. No compensation was provided for any of the persons involved.

COMMENT & RESPONSE

Finerenone for Albuminuria in Patients With Diabetic Nephropathy

To the Editor Dr Bakris and colleagues1 evaluated the safety and efficacy of dual blockade of the renin-angiotensin-aldosterone system by adding the nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone to an angiotensin-converting enzyme (ACE) inhibitor or an angiotensin receptor blocker in patients with diabetic nephropathy. The authors stated that the addition of finerenone resulted in improvement in the urinary albumin-creatinine ratio (UACR) compared with placebo. We have a number of concerns about the study.

First, the primary outcome of the study was the change in UACR from baseline to day 90. Despite being a marker for kidney injury, this ratio does not necessarily predict a hard outcome. In previous systematic reviews and meta-analyses, the combination of an MRA and an ACE inhibitor or angiotensin receptor blocker was found to be associated with a significant decrease in blood pressure, albuminuria, and proteinuria without a reduction in all-cause mortality, cardiovascular mortality, or progression to end-stage renal disease.2

Second, the study did not provide data on the incidence of hypotension or blood pressure variability, which are associated with prognosis and safety. Hypotension is an important adverse event with dual therapy,3 and blood pressure variability has been linked with diabetic nephropathy.4 If the authors could provide such data, physicians would be able to better evaluate the safety and implications of dual blockade therapy.

Third, the dose-dependent effect was investigated by analysis of covariance in the study. The higher the MRA dose, the greater was the reduction in proteinuria. But it is possible that the effects might instead be attributed to the use of high-dose ACE inhibitor or angiotensin receptor blocker treatment.5 This study increases understanding of dual blockade with an MRA plus an ACE inhibitor or angiotensin receptor blocker. However, further studies are needed to support combination therapy as an evidence-based practice.

Yanhuang Feng, MD
Xiaoxi Zeng, MD, PhD
Ping Fu, MD, PhD

Author Affiliations: Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

Corresponding Author: Ping Fu, MD, PhD, Division of Nephrology, Department of Internal Medicine, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China (fupinghx@163.com).

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.