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I
magine that you have received a posi-

tive result on a routine cancer screen-

ing test. Follow-up biopsies were 

inconclusive, and the decision to treat 

aggressively or monitor conservatively 

is yours. Consider the following infor-

mation: 0.1% of the population has a ter-

minal version of this form of cancer, 99% 

of those people will appear positive on the 

test you have been administered, and 5% 

of those without terminal cancer will still 

have a benign condition that tests positive. 

Given your test result, what is the prob-

ability that you have terminal cancer and 

should treat it aggressively? When judg-

ing risks and trying to predict the future, 

how should you decide?  We need to better 

understand the structure of risks and how 

the human mind creates representations of 

risk and probability.  

In the scenario above, if your rapid im-

pression of the information at hand sup-

ports the intuition that the probability of 

terminal cancer is close to 95%, then your 

line of thinking is not surprising, but you 

would be wrong. The true probability is 2%, 

with a complementary 98% risk of having 

undergone unnecessary (and even danger-

ous) treatment (1). This is hard to grasp 

intuitively without using Bayes’ theorem 

of conditional probability (2); even physi-

cians and medical students are prone to 

this error without having been explicitly 

instructed on the statistics of rare events 

(3). However, it might be understood more 

readily if you considered the situation in 

another way: The small number of false 

positives in the large population without 

cancer is a greater number than the major-

ity of true positives in the smaller subpopu-

lation that actually have the disease. 

Far from being a statistical curiosity, 

this is the exact dilemma faced by patients 

and their physicians every day, and it will 

become more common as we learn more 

about the genetic factors that a" ect health. 

A “precision medicine” approach formalizes 

the insight that no two patients are alike (4, 

5). Improving medical diagnostic technol-

ogy will improve many people’s lives, but to 

prevent doing harm, the medical fi eld and 

society at large need to understand that 

technological advances will not remove 

uncertainty. By understanding the way we 

think about risk, we can bring insight from 

the pages of statistical textbooks into leg-

islative sessions, hospital exam rooms, and 

family discussions alike.

Contemporary research on medical deci-

sion-making originates from two traditions 

in the psychological sciences. The “heuris-

tics and biases” view claims that errors in 

reasoning are an unavoidable consequence 

of our mental architecture as humans. Un-

der this view, we each possess a fast and im-

pression-based system of decision-making, 

in addition to a slower, refl ective one capa-

ble of complex calculations that checks and 

verifi es our quick impressions (6). Errors in 

reasoning may result when time pressure 

or situational complexity cause the refl ec-

tive system to accept as fact the incorrect 

output of the impression-based system. 

Thus, the primary solution to such errors 

is education in statistics and awareness of 

our own biases. The “ecological rationality” 

view of decision-making o" ers another way 

out, however. By considering reasoning er-

rors as the consequence of having evolved 

to mentally process information in specifi c 

formats, we can better understand risk and 

uncertainty by communicating with one an-

other using the right types of information 

(3). For example, abstract concepts, such as 

single-event probabilities (e.g., 1% chance), 

would not have appeared naturally in envi-

ronments inhabited by primitive humans, 

so we never evolved to think about single-

event probability with ease (7). Instead, 

thinking about long-run frequencies rela-

tive to a reference class (e.g., 1 out of 100 

times) is easier because it conveys the same 

information as percents or probabilities in 

a way that refl ects how we experience the 

natural world. Indeed, even experts in sta-

tistics have dif  culty making judgments of 

single-event probabilities without explicitly 

calculating them. However, when the same 

problems are represented as event frequen-

cies, even the statistical layperson can gen-

erate a response in accordance with Bayes’ 

theorem. For example, when a sample of 

college undergraduates was asked to solve 

problems on the basis of single-event prob-

abilities, only 12% generated a Bayesian 

response, whereas 56% of another sample 

did so when given numbers in a natural 

frequency format (8). Using probing ques-

tions and visual aids depicting frequency 

information raised the accuracy to 76% and 

92%, respectively.

Few believe that numerical formats au-

tomatically endow us with the ability to 

mentally calculate the probability of some 

event by counting observations and com-

paring them to our prior beliefs. Which 

cognitive processes, then, account for this 

remarkable facilitation of Bayesian infer-

ence under “natural” or event frequencies? 

The mind embodies a natural capacity to 

perform elementary set operations, such 

as taking the intersection of sets (e.g., “A 

and B”) and union of sets (e.g., “A or B”) (9). 

Such set operations can be induced by fre-

quency formats, which provide cues to the 

set structure of the problem and therefore 

facilitate Bayesian inference (9). Indeed, 

the key variable that predicts accurate in-

ference is not the statistical format of the 

problem but the transparency of nested 

set relations (8, 9). As long as the nested 

set structure of events in a larger reference 

class is made accessible, one can accurately 

understand and reason from single-event 

probabilities (10). However, when the set 

structure of the problem is obscured by the 

use of unusual (small or large) reference 

class sizes, even frequency formats are dif-

fi cult to understand (11). 

Where does contemporary research on 

human judgment and decision-making 

leave us as patients, physicians, and policy-

makers? Even among professionals, there 

remains a lack of consensus on screen-

ing guidelines for diseases such as breast 

or prostate cancer when their prognostic 

values are ambiguous (12). In 2014, the 

U.S. Preventive Services Task Force recom-

mended against using prostate-specifi c an-

tigen (PSA) test results in diagnosing and 

treating prostate cancer because the false 

positive rate and ambiguity of prognosis 

meant that men with benign or slow-grow-

ing tumors were undergoing unnecessary 
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and risky treatment procedures (13). How 

did policy-makers arrive at this decision? 

They understood the statistical structure 

of risk in medical health problems. Health 

care systems that screened healthy men for 

PSA regularly had an approximately 98% 

5-year survival rate for those diagnosed 

with cancer, whereas those that tested only 

men with symptoms had a 71% survival 

rate. Why, then, was there no signifi cant 

di" erence in cancer mortality (26 versus 

27 out of 100,000) between the systems 

across the entire population? Screening 

people aggressively when they are young 

ends up diagnosing extra cases who do 

not truly have cancer, or whose cancer is 

so slow-growing that they would not have 

been at risk for far beyond 5 years anyway. 

This may seem like an innocuous di" er-

ence, but the extra diagnoses are associ-

ated with treatments that have their own 

risks. Using natural frequencies and draw-

ing attention to the appropriate reference 

class (the whole population, not just peo-

ple who are diagnosed before dying) draws 

attention to the fact that a higher survival 

rate is associated with a higher overall rate 

of positive test results and no di" erence in 

base rates of cancer (as indicated by mor-

tality in the whole population) (14). Our 

instincts may tell us that 5-year survival 

rates are important, but only if placed in 

the appropriate context—natural frequen-

cies or nested sets.

What measures can be applied to improve 

the ability to draw accurate statistical infer-

ences and to fully appreciate the risks posed 

by medical decisions? It is important to con-

sider conditions that lead to errors, such as 

risks that could be framed equivalently as 

gains or losses. Considering all possible out-

comes (instead of only survival or mortality) 

can prevent inappropriate use of heuristics. 

Representing the problem in natural fre-

quency formats or highlighting its nested set 

structure is helpful, and depicting outcomes 

using visual diagrams can facilitate fully in-

formed decision-making via the creation of 

mental simulations (see the fi gure). 

In the era of precision medicine, we are 

using a data-driven approach to under-

stand patients as individuals rather than 

group averages. We are moving away from 

doctors telling patients with certainty 

what is wrong and what to do, toward a 

model in which doctors empower patients 

to take charge of their own care. To facili-

tate safe self-stewardship, the biomedical 

fi eld needs to equip patients with the tools 

to make well-informed decisions in the 

face of uncertainty. j
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P(disease|positive test) =

P(disease)
P(positive test|disease)

P(positive test|no disease)

= 0.1% prevalence of disease
= 99% true positive rate
= 5% false positive rate

A Single-event probability format

 Bayes’ theorem is necessary (and difcult) when using single-event probabilities to calculate the probability
 of a hypothesis (having the disease) given the evidence for it (a positive test result).

B Nested set format

 This view facilitates accurate judgment because it represents base rates (prevalence) and reference class
 size (1 of 1000) without having to multiply a conditional probability by the base rate.

= 1.94% < Answer: 2%
 0.1% 3 99%

 (0.1% 3 99%) + (99.9% 3 5%)

C Pictograph format

< Answer: 2%

< Answer: 2%

1000 people

999  of 1000
are healthy

1  of 1000
has the disease

<50 of 999

falsely test positive

<949 of 999

accurately test negative

1 of 1 accurately

tests positive

Person who is
healthy and still
tests positive

Person who is
healthy and tests
negative

Visual representations of risk structure 
As medical science reveals more about genetic health risk factors, patients will need tools to understand the 

uncertainty inherent in those risk factors.

P(disease|positive test) = = = 1.96% < Answer: 2%
 P(disease AND positive test)

P(positive test)

1

50 + 1

Question: 0.1% of the population has a disease, and a test detects it 99% of the time but falsely identifes 

5% of healthy people as sick. What is the likelihood of a positive test result being accurate?

Each format below conveys the same fundamental information about risk structure.

Person who has

the disease and

tests positive
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